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J. Phys.: Condens. Matter 3 (1991) 6489-6507. Printed in the UK 

Continued fraction expansion for the x-ray absorption cross 
section 

Adriano Filipponi 
UniversitB de& Studi dell’ Aquila, Dipartimento di Fisica, Via Vetoio, 67010 Cop 
pito, L’Aquila, Italy 

RKeived 20 Decembu 1990. in final form 18 March 1991 

Abstract. The Haydodt recursion scheme is for the f h t  time applied to the 
matrix inversion required for calculations of x-ray absorption cross sections. A 
mapping of the multiple-scattering contributions into continued fraction coefficients 
which appears to improve the convergence of the multiplescattering series is d a  
rived. Numerical applications to three different systems-Mn ion in water solution, 
a coppu-imidamle molecule, and c-Si--are pwented. 

1. Introduction 

X-ray absorption spectroscopy (XAS) is a powerful research tool in several fundamen- 
tal and applied fields covering solid state and liquid physics, chemistry and molecular 
biology [I]. Some examples of fundamental aspects are the problems related to the 
approximation of the ‘optical’ potential felt by the photoelectron in the excited state 
and more generally the inclusion of many-body effects in the treatment of the process 
[2, 31. Typical applications are, however, based on the possibility of obtaining local 
structural information around photoabsorber atoms in both the extended x-ray ab- 
sorption fine structure (EXAFS) [4] and x-ray absorption near edge structure (XANES) 
[5] regimes. 

The basic theory of XAS [6] can be easily formulated in the case of a muffi-tin 
model for the final state potential, where spherically symmetric atomic potentials are 
enclosed in non-overlapping spheres embedded in a constant interstitial region; in the 
following the notation of the references [7, 81 will be used. For K ,  L,, . . . edges the 
polarisation averaged cross section is given by 

Here U,, is a featureless atomic cross section. T and G are the phase shifts and 
propagator matrices in a local basis. An element of one of these matrices is indicated 
by the indices i , j  which span over the different atomic centres in the structure, and 
by a further set of angular momenta L ,  L’ (where L = { I ,  m)). Each couple of atomic 
indices identifies an ‘atomic’block of the matrices. In this representation the T-matrix 
is block diagonal. The propagator matrix is instead composed of null diagonal blocks, 
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(i, 9 sites, and non-null off-diagonal blocks G?jL' describing the free propagation from 
iite'i to site j. 

T =  

to 0 0 ... 

0 0 t ,  ... 0 
0 t ,  0 ... : ) 

i )  . . . .  . . . .  . . .  
0 0 0 ... t N - 1  

In the present choice ?f the potential the phase-shift matrix for the atom i is diagonal 
in the L indices, t:," = t!6,,,, because the angular momentum is conserved in the 
scattering from a single site, due to the spherical symmetry of the potential in the 
atomic sphere. 

The expression for a single propagator block involves 35 symbols and is given by 

Gi L : L' = -(4a(21+ I)(%' + 1))f c(ZIl + l)! 
81 

I, 

Here hf are the Rankel functions, and Yt,m are the spherical harmonics. Under 
exchange of indices i, j -+ j, i the spherical harmonic changes as V,,, -+ (-I)'Y& due 
to the inversion of the propagation direction. We note that the propagator matrix G 
and the (I + GT) matrices result in general complex matrices. 

The exact calculation of the cross section requires a few elements of the inverse of 
the matrix I+GT in equation (1) to be computed, corresponding to the photoabsorber 
site and angular momentum L, = {lo,  m,}. For the previously mentioned edges I, = 1 
due to the dipole selection rule. 

The inversion is usually performed numerically and possibly using some approxi- 
mate method which is fast in computing time and provides a simple physical interpre- 
tation of the successive approximations. Two kinds of approach, which are connected 
with two different energy limits, have so far been proposed. In the low energy limit, 
where the Hankel functions have a larger modulus, all of the atoms are strongly coupled 
by the G-matrix. As a consequence the effects of particular structural arrangements 
on the cross section can hardly be decoupled. Only the totar contribution from the 
whole structure has a meaning. Successful methods for performing the total inver- 
sion which are commonly used nowadays in XANES calculations have been proposed 
by Durham el a1 and Vvedensky et 4I [9]. These methods take advantage of a par- 
tition of the original cluster into progressively successive shells and make use of the 
Gauss-Seidel-Aitken iterative method to perform the basic inversion. 

In the high energy region the matrix inversion can be performed by series, each 
term of which represents successive scattering by a sequence of sites [6, 81. The physical 
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picture is particularly appealing but unfortunately this multiple scattering (MS) series 
may not converge in the low energy limit. 

In this paper a new way of approximating the matrix inversion in terms of contin- 
ued fraction (CF) approximants is worked out, adapting, to the XAS case, ideas which 
have been extensively applied to other areas of the solid state and also statistical 
physics. Both analytical and numerical results will be presented. 

The plan of the paper is the following. In section 2.1 the standard MS expansion is 
reviewed. In section 2.2 the Haydock recursion is introduced and applied analytically 
to the calculation of the cross section. In section 2.3 the CF coefficients are explicitly 
derived up to the third order as a function of the MS terms and the meaning of the 
successive approximants is discussed. In section 2.4 the problem of convergence of the 
CF approach is treated at a qualitative level. Finally section 3 contains examples of 
explicit numerical calculations. 

2.  Theory 

2.1. Mulfipie scattering approach 

In the high energy limit the GT matrix gives a small contribution with respect to 
I in the inversion, and the formal matrix expansion T(I + GT)-' = T(I - GT + 
GTGT-GTGTGT+. . .) is convergent [SI. Of this expansion only the diagonal terms 
corresponding to the photoabsorber atom at the initial angular momentum should be 
evaluated. If the block nature of T and G is also taken into account, it is realized that  
the TGT term gives no contributions. The (MS) series is then given by 

where 

These complex <,, quantities are related to the more commonly used x,, oscillations 
by the expression 

At sufficiently high photoelectron energy the matrix GT gives a small contribution 
and consequently the first non-trivial terms account for all of the signal. In this region 
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(EXAFS) 141 the expansion reads 1 + GTGT + O ( G F )  -+ 1 + &. In the only 
possible products of G and T are related to scattering paths involving only one atom 
i at a time. The structural signal is therefore decoupled in the sum of the atomic 
contributions which can be more easily analysed. In the region closer to the edge 
where more MS terms are needed to describe the signal correctly it is not easy to 
associate spectral features to particular structural arrangements. Progress on this line 
within the framework of the MS theory has been recently obtained in which the XAS 
signal is expressed in terms of averages over the n-particle distribution functions [lo]. 

This MS expansion is particularly satisfactory because it provides a direct physical 
interpretation of the successive terms, unfortunately the so called intermediate MS [8] 
region is usually narrow due to convergence problems at  lower energies. 

2.2. Recursion method 

A different algorithm that appears to be particularly suitable for calculating the ele- 
ments of the inverse of the I + GT matrix in equation (1) is the Raydock recursion 
scheme. The method comprises a powerful recursive algorithm that can he applied to 
a generic matrix A in order t o  calculate any diagonal element of its inverse, for in- 
stance (A-')l , l .  Initially, a transformation of the given matrix into tridiagonal form 
by means of the following recursive relations (originally introduced by Lanczos [14]) 
is performed. 

b,+lln+l)=Aln)-a,In)-b,In- 1) 

I,+,(n+ 11 = (nlA -a,(nI -b,(n- 11. 

The vectors In) and (nI represent a biorthonormal basis set (nlm) = 8,,,,, in which 
the matrix A is tridiagonal. By definition, the coefficients an and b, are 

a, = (n[Aln) b,,, = (n  + 1IAln) = (nlAln + 1). (8) 

Now, the seed for the recursive relation (7) is chosen as the vector with all null elements 
besides a unity element in a position corresponding to the diagonal element of A-' that 
is to be calculated. Then, by construction, the diagonal element of the inverse matrix 
is equal to the diagonal element in position ( 1 , l )  of the inverse of the tridiagonal 
matrix. This element can be obtained by means of the following continued fraction 
expansion: 

(9) 
1 

~~~~ ~~~ ~~ ~~ It . .  

~~ ~~~ ~~ 6; ~~~ ~ ~~~~~ ~ 

W ) l , l  = 
al - 

a2 - 
bi . .  a3 - - 

a4 - 
whose coefficients are directly given by equation (8) and (7). Progressively more accu- 
rate expressions for the element of the inverse matrix can he obtained by the successive 
approximants of the continued fraction, and consequently performing successive re- 
cursion steps. 

This method has been widely used in several areas of solid state physics since many 
expressions involving Green's functions in a local basis reduce to the calculation of 
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some elements of an inverse. Pioneering works in this field were mainly by Haydock, 
Heine and Kelly [ll, 121. Very similar procedures are also used in the different context 
of non-equilibrium statistical mechanics related to the memory function approacch; a 
full overview of this field of research can be found in [13]. In typical cases the recursion 
method is applied once for all energies to the calculation of the resolvent (E- H)-l of 
a Hamiltonian H in a local basis. The application of the recursion method that will 
be presented here is of a different nature; indeed the method will be used to perform 
the inversion of the matrix I + GT in equation (1) which is tridiagonalized again for 
each new energy value. The version of the algorithm needed in this case is that for a 
generic complex matrix; it is slightly more complicated than the more usual one for 
symmetric or Hermitian matrices because it is necessary to operate with the matrix 
both to the right and to the left. For further details on this algorithmsee for instance 

The fundamental quantities of interest will be the expressions of the type 
[(I + CT)-']& that have to be evaluated for each energy point at the various 
m, quantum numbers, for instance m, = -1,O, 1. The MS expansion for such quanti- 
ties will be the (1 + t2(m,) + &(m,) + c4(mo) +. . .) expressions in equation (4). For 
each diagonal element of the inverse a different recursion procedure will be performed 
starting from the appropriate vector obtaining a suitable continued fraction expansion. 
Later we will focus on a single recursion. 

In order to give a physical interpretation to the successive approximants of the 
continued fraction we work out analytically the recursion method in the general case of 
a system with N atomic sites. Following the previous notation, vectors and matrices 
will be indicated in block format, each block referring to one atom. The internal 
indices of the block will be I ,  m, i.e. a set of angular momentasufficient to describe the 
scattering from the site. The starting vector is defined by the element corresponding 
to atom 0 and angular momenta lo, m,. If the average over several m, values were 
needed, several continued fractions will have to he calculated each one starting from 
the appropriate m, element. The null block vector will be indicated with 0 while the 
one with the only non-zero element equal to 1 in position lo, m,, will be I. Then the 
starting vectors are: 

1151. 

clearly a, = (Il(I+CT)ll) = 1. By applying the matrix to the vectors and subtracting 
the component along 11) one obtains the vectors of the second step: 

and 
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G i j t f  indicates a row by column product in the angular momentum indices; in this 
case k t  has to be evaluated for fixed Lo and running L. The complex number b1 is by 
definition 

N- 1 

b: = (GO,i t iGi ,OtO)Lo,Lo = (2 (12) 
i= l  

i.e. it coincides with the expression for the second term in the MS expansion, By acting 
with I + GT on the vector 12) we obtain 

here j runs over the atoms 1,. . . , N - 1. The a2 coefficient is readily calculated: 

The last equality is obtained by identifying the first GtGt product clearly as the c2 
previously defined and the second GtGtGt product as the third term in the MS series 
(Fa) where all the possible scattering events of the type 0-i-j-0 are included. 

Let us now proceed to the next terms first of all evaluating 

I=, 

(I#>) 

Now the vectors 13) and (31 are obtained by orthogonalization to the first two: 

1 
bz13) = (I + GT)12) - a&!) - b , l l )  = - 

61 

4 

- ( I - -  :) [ (Gj,DtO)L,Lc,] -" (:)] 
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and the two terms Gj,,,t0 can be summed and the coefficients will be 

6495 

Similarly 

1 
(I+GT)13) = - 

b l b ,  

The normalizing factor is easily computed, 

N-1 

G,,itiGi,oto 
ti+$) 

(i+k) 

N - 1  N - 1  

+ ( G k , j r j G j , i t ~ G i , O t O ) L , L ~  
j = ,  i=* 

(i+k) t;W 

where the atom row index is now k. After asimple algebra we obtain the a3 coefficient. 
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r N - - l  

The last equality is obtained by recognizing that the sums with four and five Gt prod- 
ucts add up to the total fourth and fifth order hfs. Indeed the possible paths involv- 
ing the photoabsorber atom as second or fourth scattering site are listed separately. 
Although tedious the derivation can be continued to higher orders with increasing 
algebraic difficulties. 

The present treatment has led to explicit expressions for the coefficients of the 
tridiagonal matrix, up to the third order, in terms of the MS contributions 6,. 

2.9. Continued fraction ezpansion 

The formulae which have been derived earlier are of a particular interest for practical 
as well as theoretical reasons. By using the Lauczos-Haydock recursion we have ob- 
tained a transformation of the original matrix into tridiagonal form ({a,,, b")) .  These 
expressions provide the mapping of the original system of n atomic centres that scat- 
ter in many angular momentum channels into a simple one-dimensional chain wherc 
the scattering can occur between successive degrees of freedom only. This is the well 
known 'chain model' [11-13]. In figure 1 a pictorial representation of the effect of the 
transformation is shown. 

Figure 1. Sdwmaticrepresentationof the mapping of the originalsystem (left) with 
a strong coupling among all of the sites into the chain model (right) in which the 
coupling is reduced to neighbouring sites only. 

The diagonal element of the inverse of the I + GT matrix, which is our unknown, 
equals the (1,l) element of the inverse of the tridiagonal matrix which is much easier 
to calculate. The element ( 1 , l )  of the tridiagonal matrix a ,  is unity, the other are 
the previously calculated a i ,  j 2. It  is possible to transform the tridiagonal matrix 
{a", 6,} into a tridiagonal matrix { 1, e,)  (with all 1s on the main diagonal) without 
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affecting the ( 1 , l )  element of the inverse. This is obtained as follows 

6497 

where ci = ai/-. This transformation corresponds to an equivalence transfor- 
mation on the related continued fraction. In terms of the E,, the e, coefficients are 
respectively: 

It can be argued that, because of the reduced coupling between the various degrees of 
freedom, the convergence properties of any approximate evaluation of the inverse will 
be largely improved by this transformation. The simplest way to calculate the (1,l) 
element of the inverse matrix consists in the continued fraction expansion [ll]. A 
truncation of the tridiagonal matrix at the nth order will correspond to approximate 
the continued fraction with its nth approximant. In our case the continued fraction 
approximants hereafter indicated by f, can be given as a function of the MS terms, 
using the coefficients (a,, b,) previously calculated. The first of them are 

1 f, = 1 fi = c 

c (21) 
1 

f 3  = 

These approximants are progressively more cumbersome expressions for the quantities 
[(I+ GT)-']&, which involve a finite number of terms of the MS series. 

A similar mapping of the MS series into CF can actually be obtained using recur- 
sive relations involving Hankel determinants (see for instance [16]), which can map 
any power series into a CF. However by direct inspection it is found that such CF 
approximants are effectively different from those obtained by the recursion method in 
this specific case. 

The physical meaning of the continued fraction approximants f, is evident; they 
correspond to calculate exactly the cross section for a finite chain model which includes 
n - 1 bonds. Each bond of the chain model is an effective coupling including a very 
large number ofscattering events in the real system which involve all of the atoms. In 
principle one could perform the inversion of the tridiagonal matrix by series obtaining 
a modified MS series, the CF approximants represent the sum of the series related to 
a finite chain model. 

In order to understand the relation between CF approximants and MS series it is 
also instructive to expand the approximants. It is recognized that by ordering the 
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various terms according to the index m in the cm for a generic approximant f, we 
obtain 

f, = 1 + F z  +& + . . . + f" + O(n + 1). (22) 

The terms up to order n coincide with the terms of the MS series but in addition 
corrective terms of any order are present. These are expressions such as the products 
and powers of tm terms, with m < n, that in some cases can be associated with 
leading terms of the exact MS series. Thus the addition of one o or b coefficient to the 
continued fraction corresponds to reproducing a new term of the MS series correctly. 

The formulae presented in this and in the previous sections are remarkable for 
two reasons at least. The recursion method represents an alternative algorithm to 
perform numerically the matrix inversion, that can be easily implemented, which 
requires O ( N z )  operations and can be used in direct calculations of XANES spectra 
or even to calculate XAS spectra in a more extended energy interval. The analytic 
procedure presented in section 2.2 clarifies what really happens in such a numerical 
implementation and what are the connections with the MS expansion. We note, for 
instance, that the high energy limit of the approximants coincide with the EXAFS single 
scattering terms. Numerical application of the recursion algorithm will be presented 
in section 3. 

From a different point of view the present treatment provides a systematic algo- 
rithm to map a finite number of MS terms into continued fraction coefficients. This can 
be in principle implemented easily calculating the complex MS terms <,, using methods 
like that of [SI or similar procedures, and including such terms in the expressions (21) 
for f,. In the next sections we will show how that can result in an improvement in the 
convergence, thus providing a better and stable approximation to the cross section, a 
particularly relevant occurrence in the region where the MS series is not convergent at 
all. Expressions like equation (21) may represent a bridge between the usual treatment 
of the high energy EXAFS region and the edge XANES region. 

2.4. Convergence 

The mathematical theory of continued fractions is well developed and details on con- 
vergence theorems, truncation errors and numerical stability can be found in books 
[17]. A discussion of the convergence properties of the CF generated by the Haydock 
recursion scheme applied to typical density of states or memory function problems can 
be found in [12] and [13]. 

In this section the convergence of the CF algorithm applied to the inversion of the 
I + GT matrix is discussed. The results presented here stimulate further work of a 
more rigorous nature on the subject. 

If the original matrix is finite dimensional with size N (a system with a finite 
number of atoms and using a finite number of angular momenta) the Haydock recursion 
scheme is exact in N steps and the corresponding CF is finite. In this case what 
should be considered is the truncation error obtained if the procedure is stopped at 
step m < N .  

The problem can he stated as follows: let us map the continued fraction approxi- 
mants f,, into the difference series (or sum) 
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The recursion method will be said to converge if the rest of the difference series can 
be reduced to an arbitrary small number. The rest in modulus can b.e overestimated 
by 

N 

IfN - f"i 4 K f i  - f i - 1 ) I .  (24) 
i=n+1 

In the case of a tridiagonal matrix of the type {l,cn} it is possible to obtain the 
following simple recursion relation between successive differences of approximants. 

Here Dn and D"+' are the determinants of the tridiagonal matrix truncated at the 
order n and n + 1 respectively. Iterating equation (25) i t  is possible to  express any 
difference of approximants as a function of a fixed difference with lower indexes, and 
therefore the rest as a function of the last calculated difference. 

where 

7; = (S - 1) 
Provided that we start from some n value for which all the yi have a modulus less than 
unity then the rest is finite (an upper limit can be calculated), and the CF converges. 
For instance let 17;l \< r < 1, i > n, then 

Thus the 'convergence' criterion in terms of the chain model determinants is 

starting from some finite n value which is equivalent to 

i > n. Re(%)>- 1 
2 

This is a condition on the ratio of the chain model detern--ants with i +  1 an- i sites 
for i > n. In terms of the eigenvalue spectrum of the {I, cn} matrix, equation (29) 
will be satisfied if, for instance, after a given size n adding new bonds on the chain 
does not change the old eigenvalues too much and will only add new eigenvalues close 

Now it will be of a particular interest to establish convergence criteria in terms of 
some properties of the original matrix I + GT. If GT = 0 the matrix is the identity 

to (1,O). 
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and clearly the procedure will converge at the first step. Increasing the magnitude of 
the GT matrix the eigenvalues of I + GT will spread around the (1,O) point and in 
general more recursion steps will be needed. The fundamental reason for convergence 
of the procedure is that the Haydock recursion scheme automatically selects as first 
basis elements the directions corresponding to the eigenvalues of the original matrix 
which mostly depart from their centre (1,O). For this reason once the ‘dangerous’ 
directions have been selected condition (29) will be satisfied. Therefore the number 
of iterations required will be of the order of the number of dangerous eigenvalues. 

In terms of the spectrum of the original matrix, a very coarse condition can be 
obtained substituting the determinant ratio of the {l,cn} matrixin equation (29) with 
a generic eigenvalue of the I + GT matrix. An estimate of the number of required 
iterations is given by the number of eigenvalues out of the region &(A)  > f. If this 
number is finite the CF algorithm is convergent. 

This statement is approximate because the two spectra do not coincide due to the 
non-unitarity of the transformation although their centre is the same (1 ,O)  point. The 
condition is however approximate by its own nature and establishes only an estimate of 
the required number of iterations. The CF algorithm is therefore expected to converge 
in the cases of systems with a finite number of atoms. Indeed the number of dangerous 
eigenvalues will be finite even though the limit of angular momenta is extended to large 
values; only trivial eigenvalues will be added and the spectrum will accumulate around 
the (1 ,O)  point. Problems may arise in the limit of infinite number of atoms because 
the eigenvalues may coalesce into a cut or equivalently an infinite number of them 
may lay in the dangerous region. 

In comparison with the condition for convergence of the MS series which requires 
all eigenvalues to be within the circle of radius 1 centred around (1 ,O)  in the complex 
plane ( A j  E {IX, - 11 < l}) the convergence requirement for the CF algorithm is less 
stringent. Indeed an infinite number of dangerous eigenvalues is now required, while 
to prevent the MS series converging a single eigenvalue is sufficient. 

In the next section examples of eigenvalue spectra of typical matrices and the 
related number of iterations needed will be given. 

3. Numerical examples 

In this section numerical applications of the recursion method will be presented. Let 
us first point out that both the brute force numerical application of the recursion 
to the matrix I + GT and the wiser substitution of the <, terms in equation (21) 
are perfectly equivalent. The latter method is faster but in practice can only be 
used up to the f3 approximant because of the complexity of calculating higher order 
E ,  terms. The former method turned out to be more practical and the examples 
presented in the following will refer to this procedure. From the computing time point 
of view the recursion method is economical with time and memory. At each step the 
number of operations is of the order of NZ, N being the dimension of the matrix 
which is Ci (Ihax + 1)’; lia, is the maximum angular momentum used to describe 
the scattering from the site i of the system, the sum is extended to all of the atoms. 
Two numerical tricks can be easily implemented to speed up the computation. The 
first consists in considering the l,,, atom to be energy dependent as well; indeed the 
angular momenta effective in the scattering increase as 1” k R, where R, is 
some effective radius of the potential and k - & is the photoelectron wavevector, 
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where E is the energy above the muffin-tin level. In this way it is possible to reduce 
the matrix dimension and computing time Considerably in the low-energy part of the 
spectrum. In the high-energy part of the spectrum large matrices are needed; however, 
the energy mesh can be coarser because the cross section varies smoothly. The second 
trick consists in using all the possible symmetries of the atomic cluster to reduce the 
number of non-zero elements in the G matrix. Even if the system has no symmetries it 
is always possible to orient the (say) Z-axis along the 0-1 bond for instance obtaining 
the Go,, propagator diagonal on the m indices. When many zeroes are present in the 
GT matrix the computing time is reduced because only the products of the non-zero 
elements can be performed at each step. If the GT matrix can be reduced in diagonal 
form blocks, than only the block of the 0, Lo element will play a role in the recursion, 
and therefore its dimension is considerably reduced. 

The applications that will be presented here cover different systems in order to 
show the generality of the method. All of the calculations use a complex, energy- 
dependent, Hedin-Lundqvist potential [2, 31, in the muffin-tin approximation. The 
phase shifts have been generated using the routines mainly written by Natoli and 
Tyson, included in the GNXAS package 1181. The program to compute the XAS using 
the CF approach has been written by the author. No explicit use of the symmetry has 
been made in the calculation that will be presented. It is clear that working using 
a symmetrized basis larger problems than those treated here can be handled. The 
CF method, however, enables even clusters without any symmetry of the size of 100 
atoms to be treated. 

The spirit of this paper is to assess the theoretical aspect rather than present 
extended applications to model systems; for this reason no attempts have been made 
to improve the modelling of the potential. Neither have configurational damping nor 
core-hole lifetime effects been taken into account. For each application an appropriate 
experimental reference will be quoted for comparison. The experimental spectra are 
not reproduced in the figures. Clearly all of the calculated spectra coincide, within 
the convergence errors, with those obtained using a standard XANES calculation. 

The first system chosen is a simple cluster with a Mu atom (photoabsorber) in the 
centre surrounded by six oxygen atoms in an octahedral configuration at a distance of 
2.17 A. This geometry is representative of the water configuration of transition metal 
ions in solution. The MnO, complex has been the subject of many XANES and MS 
studies [8, 191. The calculated cross section as a function of the energy up to 15 Ryd 
above the absorption edge is reported in figure 2 for an increasing number of iterations 
from two to six. Here ‘number of iterations’ is intended to be the dimension of the 
resulting CF, or equivalently the number of the sites in the chain model. 

The fast convergence of the algorithmeven in the edge region is evident; in the last 
spectrum the relative error is less than but the correct shape, similar to more 
standard XANES calculations, is reached since the third iteration which corresponds 
to the fa analytical expressions reported in section 2.3 equation (21). By comparison 
the MS series up to the fourth order [8] is still not sufficient in the first 2-3 Ryd. 

The comparison with the experiment [8] should be regarded with some caution 
because no configurational damping has been considered; however all of the features 
are well reproduced. 

The Convergence properties of the calculation depend strongly on the spectrum 
of the 1 + GT matrix which is shown in figure 3 for diRerent energy values. The 
eigenvalues, which are indicated by dots on the complex plane, have been calculated 
numerically, in this and in the successive cases, using the full I + GT matrix; they 
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Figure 2. Absorption MSS section for the Mn06 complex calculaLed with the 
mursion melhod and using two. three, four, five and six iterations. A chain model 
with tlvee sites is sufficient to reproduce correctly the near-edge shape, while two 
are certainly sufficient for the EXAFS region. With six iterations the relative error is 
less then IO-$ in dl of the energy range. 
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Figure 3. Behaviour of the eigenvalues of the It CT matrix for the MnO6 complex 
has a function of the energy. The eigenvalue spiral in anticlodovise sense around the 
(1.0) point of the complex plane BS the energy increases. They are always enclosed 
within the convergence circle for the MS series. 

spiral in an anticlockwise sense around the point (1,O) as the energy increases. We see 
that in this case all of the eigenvalues lay within the circle of radius 1 from the (1,O) 
point, that is the MS series is always convergent. However at low energy there are at 
least two dangerous eigenvalues with a modulus close to the circle boundary on the left 
side of the plot which make the convergence of the MS series slow. When the energy 
increases these eigenvalues quickly move toward the (1,O) point and the convergence 
problems are reduced for the MS series. The vertical broken line in figure 3 represents 
the Re(r) = $ line. Because of the small number of eigenvalues on the left-hand side 
(M 2) it is expected the the CF algorithm converges in a few iterations as it, in fact, 
does. 
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This example shows the power of the method in the case of small molecules with 
a single coordination shell. Even if the symmetry is not taken into account, the whole 
spectrum can be calculated in a few CPU seconds on minicomputers. 

As a 
practical criterion the convergence was tested by the modulus of the difference of 
successive approximants of the continued fraction. When this number was less than 

The second example of an application is a biological molecule: Diperchlorato- 
tetraimidazolo-copper(II), containing four imidazole rings around a Cu atom. The 
imidazole ring is known to produce strong MS effects in the extended energy region 
[ZO]. The present total calculation includes 21 atoms of the structure and covers 
the range for the photoelectron wavevector k = 2-10 A-'. The relative oscillation 
of the cros section multiplied by k3 is reported in figure 4 in a scale that can be 
easily compared with the experiment [20]. The calculation matches the experiment 
in a detailed fashion, apart from the amplitude of the signal and its high frequency 
contributions especially at high k values due to the lack of a configurational average 
in the calculation. 

In the following examples only the converged results will be presented. 

the iteration was stopped. 

2 4 B B 10 
k (A-') 

Figure 4. Total calculstion for the EXAFS oscillation of the diperdorato. 
tetraimi&olc-copper(II) molecule as a function of the photoelectron wavevector 
k (A-') multiplied by k3 to d o w  a comparison with typical experimental data. No 
thermal damping has been accounted for. The vertical arrows indicate the energies 
corresponding to the eigenvdue spectra reported in figure 5. 

In this case a total calculation has been performed up to 30 Ryd above the edge 
which is a large number and many angular momenta (lmax(Cu) = 11, Im,,(C, N )  = 7) 
had to be included; consequently matrices larger then 1000 x 1000 had to be inverted. 
The recursion method can easily handle this. 

Looking at the eigenvalue spectrum it is recognized that in the low energy part of 
the XAS spectrum the MS series is not convergent as some eigenvalues lie outside the 
circle, figure 5 (upper plots). At some intermediate energy figure 5 (lower plots) the 
eigenvalues are all within the circle, hut some of them are still close to it reflecting 
the strong MS present in this molecular structure. At larger energies (not shown) 
the eigenvalue spectrum tends to collapse into the (1,O) point as it should do. The 
energies corresponding to the four plots of figure 5 are indicated in figure 4 by vertical 
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arrows. The number of iterations needed to reach convergence in the four cases were 
13, 10,9 and 8 as is also indicated in figure 5. We note that this scales approximately 
with the number of dangerous eigenvalues with respect to the broken line. 

0- 

3 - 1  0 2 3 

0 

-1 -1 -1 

- 1  0 1 2 3 -1 0 1 2 3 

Figure 5. Eigenvalue spectra of the I t CT matrix for the dipercbloratu 
tetrainlidazolu=op~er(II) molecule for four values of the enerrv. indicated in the - -  . I -. . 
upper right comers together with the number of iteralions of the " m i o n  needed 
for a relative e m r  smaller than It is evident that the MS series does not con- 
verge at the first and second points. The recursion method eonverga instead in a 
small number of iterations. 

The last application regards a calculation on a large cluster representative of a 
crystalline structure: c-Si, whose XAS spectrum has been widely studied for several 
fundamental reasons [21, 221. Clusters of increasing size were chosen to see the effects 
of successive neighbouring shells. These were 47 atoms to include the first six shells 
around a central silicon atom, 71 atoms (seven shells) and 99 atoms (eight shells). 
The spectra, calculated with the recursion method iterated until convergence was 
reached, are reported in figure 6 with dotted, broken and full line patterns for the 
three sizes respectively. The zero energy scale is arbitrary. No thermal damping and 
core-hole broadening have been included. The imaginary part of the Hedin-Lundqvist 
interstitial potential starts to be non-zero at the energy of 0.4 Ryd and rises to 0.24 Ryd 
in the energy interval 2-4 Ryd of the spectrum; finally it decreases to 0.20 Ryd at 
8 Ryd. This, which produces the main part of the energy-dependent broadening of 
the spectrum, roughly corresponds to a mean free path of the order of the distance of 
the boundary shells. 

As a function of the energy, the number of iterations required for the convergence 
was greater in this last case than in the previous cases. This is somehow expected 
due to the large number of atoms in the structure. Around 100 steps were needed 
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99 - e 0.3 
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Figure 6. Cms-section calculations for c-Si using finite dusters of 47 (dots), 71 
(dashes), and 99 (solid line) atoms. 99 atoms are necessary to reproduce correctly 
the first 1 Ryd of the spectrum. 

at the beginning of the spectrum, while 10-15 were sufficient in the high energy part 
(5.Ryd above the edge). I t  should be noted, however, that results accurate to 1% are 
obtained with a one-tenth of the previously mentioned number of iterations. 

Above the energy of 1 Ryd the spectrum of the 99-atom cluster coincides with 
the 71-atoms, that is seven shells are found to be sufficient to allow the spectrum to 
converge to its true crystalline shape. In an analogous way, above 5 Ryd six shells 
are sufficient. With 99 atoms the near-edge shape starts to be correctly reproduced 
[22]. The comparison with experiment [21] shows an overall agreement, even though 
some features like the peak at 3.3 Ryd and the structures around 1.6 Ryd are too 
sharp. This is tentatively attributed to a lack of thermal damping and corehole 
width, although many-body effects could be also present. 

The size of the matrices to be inverted was again larger than 1000 x 1000 due to 
the large number of atoms. The angular momenta limits were 3, 4 and 5 for the 99, 
71 and 47 atoms calculations respectively. 

The eigenvalue spectrum of the I + GT matrix for 99 atoms at the energy of 
0.467 Ryd corresponding to the first relevant peak in the near-edge region is shown in 
figure 7. The eigenvalues seem to group around a circular arc on the upper left side 
of the (1,O) point, which could be a sign of the tendency to coalesce into a cut in the 
limit of infinite number of atoms, and spread out of the circle of radius 1 along the 
other directions. The MS series is clearly not convergent; the CF algorithm instead 
required around 60 iterations in agreement with the number of dangerous eigenvalues. 

This application shows how the recursion method works efficiently even in the case 
of strongly coupled matrices like those of large clusters, and in general may cover all 
of the structures that, in practice, scientists deal with. 

4. Conclusions 

In this paper the Aaydock recursion scheme is applied for the first time to the inversion 
of the matrix I+GT appearing in the calculation of the x-ray absorption cross section. 
Both qualitative arguments and numerical applications support the evidence for an 
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Figure 7. Distribution of the eigenvaluespectrum for the =-Si ease (%atom duster) 
at the enerby of 0.48 Ryd. Here around 60 iterations are required with the CF 
approach. while the MS series is dearly not convergent at d. 

improved convergence with respect to the standard MS series, For this r e m n  the 
proposed algorithm may have interesting applications. 

The recursion method has been used numerically to perform the exact inversion 
of the I + CT matrix, e.g. in typical XANES calculations, in the case of very different 
systems which cover most of the usual fields of applications. The energy range of the 
calculation, however, has been extended well beyond the XANES region and in the case 
of the copper-imidazole molecule up to nearly 30 Ryd above the edge. In a very recent 
paper [18] the method has been used to calculate signals associated with particular 
n-body arrangements in the framework of a new method of analysis of the XAS signals. 

The analytic application of the recursion method, developed in section 2.2, has 
provided explicitly a mapping of the terms of the MS series into CF coefficients that 
improves the convergence of the calculation. Thus instead of using the usual MS 
terms x, it is proposed to use the CF approximants f, whose analytic expression as 
a function of the related c,, quantities was given in section 2.3 equation (21). In the 
case of the MnO, complex, for instance it is found that fa is sufficient to reproduce all 
of the spectrum correctly. The analytic approximants (21) could be used as starting 
points to perform further manipulations like, for instance, to calculate analytically 
configurationally averaged cross sections. 

The theory presented in this paper represents a bridge between the high energy 
EXAFS regime and low energy XANES regime that may be of interest in many fields of 
application. 
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